China wholesaler Customized Engineering Chain Steel Chain Transmission Chain M Series Roller Conveyor Chain with Attachments

Product Description

Product Description
Product Parameters

Standard GB, ISO, ANSI, DIN
Type Standard A and standard B precision roller chain, conveyor chain;
special chain with accessories, welding chain, leaf chain and sprocket
ANSI chain No. 40,50,60,80,100,120,140,160,180,200,240;
C40,C50,C60,C80,C100,C120,C140,C160;
DIN/ISO chain No. 08A,10A,12A,16A,20A,24A,28A,32A,36A,40A,48A;
C08A,C10A,C12A,C16A,C20A,C24A,C28A,C32A;
Application Food processing, pharmaceutical and chemical industries, electronics, machinery;
household appliances, automotive manufacturing, metallurgy, sewage treatment
Series A series,B series

More Products
Advantage

Certifications

DETAILS ABOUT CHINAMFG CHAIN 

Exhibition

Workshop
Application

Packaging Details

Shipping

FAQ
      

1. Are you manufacturer or trade Company?
We are a factory founded in 1997 with trade team for international service.

2. What terms of payment you usually use?
T/T 30% deposit and 70% against document, Western Union, L/C at sight

3. What is your lead time for your goods?
Normally 35 days after confirmed order. 30 days could be available in low season for some items (during May to July), and 45 days during new year and hot season ( Jan to March).

4. Samples
For customers who need sample confirmation before ordering, please bear in mind that the following policy will be adopted:
1) All samples are free of charge with the maximum value not exceeding USD 100.
2) The courier cost for the first-time sample sending will be charged for by the consignee. We will send the samples with freight to be collected. So please inform your account with FedEx, UPS, DHL or TNT so that we can proceed promptly.
3) The first-time courier cost will be totally deducted from the contract value of the trial cooperation.

Usage: Transmission Chain, Drag Chain, Conveyor Chain
Material: Stainless steel
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: 1/2"*3/32"
Structure: Roller Chain
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

What are the benefits of using an engineering chain in construction machinery?

Using an engineering chain in construction machinery offers several benefits due to its robust design, durability, and reliability. Here are some advantages of incorporating engineering chains in construction machinery:

  • High Load Capacity: Construction machinery often deals with heavy loads and tough working conditions. Engineering chains are specifically designed to handle high loads, making them well-suited for applications in construction equipment.
  • Tough and Durable: Construction sites can be harsh environments with exposure to dust, dirt, and debris. Engineering chains are built to withstand such conditions, ensuring a longer service life and reducing the need for frequent replacements.
  • Power Transmission: Engineering chains are excellent for power transmission in construction machinery, transferring torque efficiently from the drive to various components of the equipment, such as wheels, tracks, and conveyors.
  • Versatility: Engineering chains are available in various types and sizes, offering versatility in design and application. They can be customized to fit specific construction machinery requirements.
  • Reduced Maintenance: Their robust construction and resistance to wear minimize the need for frequent maintenance, leading to reduced downtime and increased productivity on construction sites.
  • Shock Absorption: Construction machinery often experiences sudden shocks and impacts. Engineering chains have the ability to absorb shock loads, preventing damage to the equipment and ensuring smooth operation.
  • Corrosion Resistance: Some construction sites may have exposure to moisture or corrosive substances. Engineering chains made from corrosion-resistant materials, such as stainless steel, can withstand these conditions and maintain their performance over time.
  • Cost-Effective: While engineering chains may have a higher upfront cost compared to standard chains, their long-lasting nature and reduced maintenance requirements make them cost-effective in the long run.

Overall, engineering chains play a vital role in improving the efficiency, reliability, and durability of construction machinery. They contribute to the smooth functioning of various components, ensuring that construction equipment can handle heavy workloads and challenging conditions with ease.

engineering chain

What are the benefits of using an engineering chain in material handling systems?

An engineering chain offers several advantages when used in material handling systems, making it a popular choice for various industrial applications:

1. High Strength and Durability: Engineering chains are designed to withstand heavy loads and offer high tensile strength, making them ideal for material handling tasks that involve transporting heavy or bulky items.

2. Reliable Power Transmission: Engineering chains provide a reliable means of power transmission, ensuring smooth and efficient movement of materials within the handling system.

3. Versatility: These chains are available in various configurations and sizes, allowing for customization to fit different material handling equipment and conveyor systems.

4. Flexibility: Engineering chains can be used in both straight-line and curved conveyor systems, offering flexibility in designing material flow paths.

5. Low Maintenance: When properly lubricated and maintained, engineering chains have a long service life with minimal maintenance requirements, reducing downtime and overall operating costs.

6. Corrosion Resistance: For material handling systems operating in harsh environments, corrosion-resistant engineering chains, such as stainless steel chains, can be used to prevent degradation and ensure longevity.

7. Wide Range of Applications: Engineering chains are suitable for a wide range of material handling applications, including manufacturing, warehousing, distribution centers, and more.

8. Precise Control: These chains offer precise control over the movement of materials, enabling accurate positioning and synchronization in automated material handling systems.

9. Reduced Noise and Vibration: Engineering chains are designed to operate quietly and with minimal vibration, contributing to a more comfortable and quieter working environment.

10. Safety: The reliability and strength of engineering chains enhance the safety of material handling operations, reducing the risk of chain failure and related accidents.

Overall, the use of engineering chains in material handling systems ensures efficient and dependable movement of goods and materials, contributing to increased productivity, reduced downtime, and improved safety in industrial environments.

engineering chain

How do engineering chains handle shock loads and impact forces?

Engineering chains are designed to handle a range of loads, including shock loads and impact forces, encountered in various industrial applications. Their ability to withstand these forces depends on several factors:

1. Material Selection: High-quality engineering chains are often made from robust materials such as alloy steel or stainless steel. These materials provide excellent strength and durability, allowing the chain to handle shock loads without permanent deformation or failure.

2. Chain Design: The design of engineering chains plays a crucial role in their ability to handle shock loads. The chain’s structure, such as the shape and size of its components, determines its load-bearing capacity and resistance to impact forces.

3. Heat Treatment: Some engineering chains undergo specific heat treatment processes to enhance their hardness and toughness. Heat-treated chains can better withstand shock loads and impact forces, making them suitable for demanding applications.

4. Fatigue Resistance: Engineering chains are designed to have good fatigue resistance, which means they can endure repeated loading cycles without failure. This property is essential for withstanding impact forces that occur intermittently in certain applications.

5. Proper Installation and Tensioning: Correct installation and appropriate tensioning of the chain are essential to ensure optimal performance under shock loads. Improper tensioning may lead to excessive stress on the chain and premature failure.

6. Chain Speed: The speed at which the chain operates can influence its ability to handle shock loads. High-speed operation may generate additional forces, so the chain must be rated to withstand these forces without exceeding its limits.

7. Regular Maintenance: Proper maintenance is crucial for extending the life of engineering chains subjected to shock loads and impact forces. Regular inspections, lubrication, and replacement of worn components are essential to keep the chain in optimal condition.

Overall, engineering chains are engineered to handle shock loads and impact forces in industrial environments. However, it is crucial to choose the right chain type, size, and material for the specific application and to follow proper installation and maintenance practices to ensure reliable and safe operation under varying load conditions.

China wholesaler Customized Engineering Chain Steel Chain Transmission Chain M Series Roller Conveyor Chain with Attachments  China wholesaler Customized Engineering Chain Steel Chain Transmission Chain M Series Roller Conveyor Chain with Attachments
editor by CX 2023-11-13