China Standard Alloy Steel Material Zinc-Plated Engineering Industrial Transmission Conveyor Roller Chain

Product Description

Alloy Steel Material Zinc-Plated Engineering Industrial Transmission Conveyor Roller Chain
 

Product Description


1. Material: Alloy steel & Stainless steel
2. Surface treatment: Shot peening / Zinc-plated / Nickel-plated / Dacromet-plated
3. Characteristic: Chain plate hole finally passed ball extrusion to ensure maximum fatigue resistance, parts of shot peening treatment makes the chain and the sleeve has a higher fatigue strength.
 

Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: 45Mn, 42CrMo, etc
3. OEM according to your request
Surface Treatment Shot peening, Polishing, Oxygenation, Blackening, Zinc-plated, Nickel-plated, Anodized, etc.
Characteristic Fire Resistant, Oil Resistant, Heat Resistant
Application Agricultural machine
Design criterion ISO DIN ANSI & Customer’s Drawing
Size Customer’s Drawing & ISO standard 
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage First quality, best service, competitive price, fast delivery
Delivery Time 20 days for samples. 45 days for official order.

 

Detailed Photos


View more products,please click here…

 

Company Profile

Material: Alloy/Carbon Steel
Sample: for Free
Transport Package: Plastic Bag+Carton Box+Plywood Case
Specification: S55K1, S62A2K1
Trademark: made-to-order
Origin: China
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

What are the signs of wear and when should an engineering chain be replaced?

Identifying signs of wear in an engineering chain is crucial for maintaining the system’s reliability and preventing unexpected failures. Here are some common signs of wear in an engineering chain that indicate it may need replacement:

1. Elongation: Over time, chains can elongate due to wear on the pins and bushings. Measure the chain’s pitch (center-to-center distance between pins) and compare it to the original pitch. If the elongation exceeds the manufacturer’s recommended limit, it’s time to replace the chain.

2. Chain Stretch: Chain stretch occurs when the chain has excessive play or slack when engaged with the sprockets. This can result from elongation and may lead to a loss of accuracy in the system’s operation.

3. Increased Noise: Excessive wear can cause the chain to produce more noise during operation. If you notice a significant increase in chain noise, it may indicate wear or inadequate lubrication.

4. Chain Damage: Inspect the chain for signs of damage, such as bent or broken links, cracked plates, or damaged rollers. Damaged components compromise the chain’s integrity and can lead to failure.

5. Rust and Corrosion: Chains used in corrosive environments may show signs of rust and corrosion. Corroded components can weaken the chain and reduce its load-carrying capacity.

6. Frequent Maintenance and Repairs: If you find yourself frequently performing maintenance and repairs on the chain, it may be an indication that it is nearing the end of its service life.

7. Chain Misalignment: Excessive wear can cause the chain to misalign with the sprockets, leading to uneven wear patterns on the chain components.

8. Loss of Tension: In applications where tension is crucial for proper chain engagement, a loss of tension could indicate wear or elongation.

9. Reduced Performance: If the system’s performance, such as speed or accuracy, is noticeably reduced, it could be due to chain wear affecting the overall functionality.

10. Maintenance Records: Keep detailed records of the chain’s maintenance and service life. Regularly inspect the chain and refer to maintenance records to determine if it has reached its recommended replacement interval.

When you observe any of these signs of wear, it’s important to replace the engineering chain promptly. Continuing to use a worn or damaged chain can lead to unexpected failures, production downtime, and potential damage to other system components. Regular inspections, proper lubrication, and timely replacement will ensure the reliability and longevity of the engineering chain in various industrial applications.

engineering chain

What are the benefits of using an engineering chain in material handling systems?

An engineering chain offers several advantages when used in material handling systems, making it a popular choice for various industrial applications:

1. High Strength and Durability: Engineering chains are designed to withstand heavy loads and offer high tensile strength, making them ideal for material handling tasks that involve transporting heavy or bulky items.

2. Reliable Power Transmission: Engineering chains provide a reliable means of power transmission, ensuring smooth and efficient movement of materials within the handling system.

3. Versatility: These chains are available in various configurations and sizes, allowing for customization to fit different material handling equipment and conveyor systems.

4. Flexibility: Engineering chains can be used in both straight-line and curved conveyor systems, offering flexibility in designing material flow paths.

5. Low Maintenance: When properly lubricated and maintained, engineering chains have a long service life with minimal maintenance requirements, reducing downtime and overall operating costs.

6. Corrosion Resistance: For material handling systems operating in harsh environments, corrosion-resistant engineering chains, such as stainless steel chains, can be used to prevent degradation and ensure longevity.

7. Wide Range of Applications: Engineering chains are suitable for a wide range of material handling applications, including manufacturing, warehousing, distribution centers, and more.

8. Precise Control: These chains offer precise control over the movement of materials, enabling accurate positioning and synchronization in automated material handling systems.

9. Reduced Noise and Vibration: Engineering chains are designed to operate quietly and with minimal vibration, contributing to a more comfortable and quieter working environment.

10. Safety: The reliability and strength of engineering chains enhance the safety of material handling operations, reducing the risk of chain failure and related accidents.

Overall, the use of engineering chains in material handling systems ensures efficient and dependable movement of goods and materials, contributing to increased productivity, reduced downtime, and improved safety in industrial environments.

engineering chain

How do engineering chains handle shock loads and impact forces?

Engineering chains are designed to handle a range of loads, including shock loads and impact forces, encountered in various industrial applications. Their ability to withstand these forces depends on several factors:

1. Material Selection: High-quality engineering chains are often made from robust materials such as alloy steel or stainless steel. These materials provide excellent strength and durability, allowing the chain to handle shock loads without permanent deformation or failure.

2. Chain Design: The design of engineering chains plays a crucial role in their ability to handle shock loads. The chain’s structure, such as the shape and size of its components, determines its load-bearing capacity and resistance to impact forces.

3. Heat Treatment: Some engineering chains undergo specific heat treatment processes to enhance their hardness and toughness. Heat-treated chains can better withstand shock loads and impact forces, making them suitable for demanding applications.

4. Fatigue Resistance: Engineering chains are designed to have good fatigue resistance, which means they can endure repeated loading cycles without failure. This property is essential for withstanding impact forces that occur intermittently in certain applications.

5. Proper Installation and Tensioning: Correct installation and appropriate tensioning of the chain are essential to ensure optimal performance under shock loads. Improper tensioning may lead to excessive stress on the chain and premature failure.

6. Chain Speed: The speed at which the chain operates can influence its ability to handle shock loads. High-speed operation may generate additional forces, so the chain must be rated to withstand these forces without exceeding its limits.

7. Regular Maintenance: Proper maintenance is crucial for extending the life of engineering chains subjected to shock loads and impact forces. Regular inspections, lubrication, and replacement of worn components are essential to keep the chain in optimal condition.

Overall, engineering chains are engineered to handle shock loads and impact forces in industrial environments. However, it is crucial to choose the right chain type, size, and material for the specific application and to follow proper installation and maintenance practices to ensure reliable and safe operation under varying load conditions.

China Standard Alloy Steel Material Zinc-Plated Engineering Industrial Transmission Conveyor Roller Chain  China Standard Alloy Steel Material Zinc-Plated Engineering Industrial Transmission Conveyor Roller Chain
editor by CX 2023-10-23

China factory Ss1114 -a Steel Engineering Class Conveyor Chain for Sugar Mill Roller Chain for Sugar Industry Chains

Product Description

Product Description

KASIN intermediate carrier chains operate in the most corrosive conditions brought about by continous operation in raw sugar juice.As a  consquence chains employ corrosion resistant materials . The swivel attachments allows for self allignment of the strands during operation compensating for anymismatch.

Related Products 

   

About Us

Kasin group was established in 1989, and its first product is casting carrier trolley for power & free conveyor system. In 1995, CHINAMFG purchased HangZhou Guoping Forging Factory (LYGP), a marketer of forging bolts & nuts to power & free line market in china. With this acquisition, CHINAMFG positioned itself as 1 of major parts suppliers of monorail and power & free conveyor system in china.

In 2

Material: Alloy
Structure: Roller Chain
Surface Treatment: Polishing
Feature: Fire Resistant, Oil Resistant, Heat Resistant
Link Plate Height: 38.50 mm
Pin Length: 81.70mm
Samples:
US$ 100/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

How do engineering chains compare to other types of chains in terms of efficiency?

Engineering chains are known for their high efficiency in power transmission compared to some other types of chains. Their efficiency can be attributed to several factors:

  • Minimal Friction: Engineering chains are designed with precision rollers and bushings, which reduces friction between the chain’s components. This results in less energy loss during power transmission.
  • High-Quality Materials: These chains are typically made from high-quality materials, such as alloy steel, which ensures durability and minimal elongation under heavy loads. This material choice helps maintain efficiency over extended periods of use.
  • Precise Manufacturing: Engineering chains are manufactured with tight tolerances and precise engineering, ensuring consistent performance and smooth operation. This precision minimizes energy losses due to chain misalignment or uneven loading.
  • Optimized Design: The design of engineering chains takes into account the specific requirements of power transmission, making them well-suited for their intended applications. This optimized design contributes to their overall efficiency.
  • Proper Lubrication: Regular and proper lubrication of engineering chains is essential to maintain their efficiency. Adequate lubrication reduces friction and wear, optimizing power transfer efficiency.

Compared to some other types of chains, such as standard roller chains, engineering chains may offer higher efficiency due to their advanced design and manufacturing processes. However, the choice of chain type depends on the specific application requirements, load conditions, operating environment, and other factors.

In certain applications, other power transmission methods like belts or gears might be preferred over chains, based on factors such as noise level, space constraints, and maintenance considerations. Each power transmission method has its advantages and limitations, and selecting the most suitable option requires careful consideration of the application’s needs.

engineering chain

What are the environmental considerations when using engineering chains?

When using engineering chains in various applications, there are several environmental considerations to keep in mind to ensure optimal performance, longevity, and safety. These considerations include:

1. Temperature: Extreme temperatures, whether high or low, can affect the performance and lifespan of engineering chains. Proper lubrication and material selection are essential to ensure the chain can withstand the temperature conditions in the operating environment.

2. Corrosive Environments: In corrosive environments, such as those with exposure to chemicals, saltwater, or other corrosive substances, it’s crucial to choose engineering chains made from corrosion-resistant materials, such as stainless steel or coatings that provide protection against corrosion.

3. Dust and Contaminants: Dust, dirt, and other contaminants can accumulate on the chain, leading to increased wear and reduced efficiency. Regular cleaning and proper chain guarding can help minimize the impact of these environmental factors.

4. Moisture and Water Exposure: For applications exposed to moisture or water, selecting chains with appropriate sealing or corrosion-resistant coatings is important to prevent rust and maintain performance.

5. UV Exposure: Outdoor applications exposed to direct sunlight can be subject to UV degradation. Using engineering chains with UV-resistant materials or protective coatings can help mitigate the effects of UV exposure.

6. Noise and Vibration: Certain environments may have strict noise regulations. In such cases, using chain guides, dampers, or other noise-reducing features can help lower the noise and vibration levels produced by the chain.

7. Load Variation: Environmental conditions may lead to variations in the load on the chain. Understanding and accommodating load variations is crucial for ensuring the chain’s reliability and preventing premature failure.

8. Compliance with Regulations: Some industries have specific environmental regulations that must be adhered to. It’s essential to select engineering chains that comply with these regulations to maintain a safe and environmentally friendly operation.

9. Maintenance and Lubrication: Proper and regular maintenance, including lubrication, is critical to ensure the chain’s smooth operation and extend its service life in any environment.

Considering these environmental factors will help in selecting the right engineering chain for a particular application, ensuring optimal performance, and reducing the risk of chain failure due to environmental conditions.

engineering chain

Can engineering chains be used in corrosive or harsh environments?

Yes, engineering chains can be designed and manufactured to withstand corrosive or harsh environments. When operating in such conditions, it is crucial to select the appropriate materials and coatings for the chain to ensure its durability and performance. Here are some considerations for using engineering chains in corrosive or harsh environments:

1. Material Selection: Choose materials that have high corrosion resistance, such as stainless steel or nickel-plated chains. These materials can withstand exposure to moisture, chemicals, and other corrosive agents.

2. Coatings and Surface Treatments: Applying specialized coatings or surface treatments to the chain can further enhance its corrosion resistance. Common coatings include zinc plating, chromate conversion coating, and polymer coatings.

3. Sealed Joints: Opt for engineering chains with sealed joints or special seals to protect the internal components from contaminants and moisture, reducing the risk of corrosion.

4. Environmental Ratings: Some engineering chains may come with specific environmental ratings that indicate their suitability for certain conditions. Check these ratings to ensure the chain is appropriate for the intended environment.

5. Regular Maintenance: Even with corrosion-resistant materials and coatings, regular maintenance is essential. Keep the chain clean, lubricated, and free from debris to prevent corrosion and premature wear.

6. Compatibility with Other Components: Ensure that all components in the chain system, such as sprockets and bearings, are also suitable for use in corrosive environments.

7. Temperature Considerations: Take into account the operating temperature range of the environment. Some materials may perform differently at extreme temperatures, affecting the chain’s overall performance.

8. Chemical Exposure: If the chain will be exposed to specific chemicals or substances, verify that the chosen materials and coatings are resistant to those chemicals.

By carefully selecting the right materials, coatings, and design features, engineering chains can effectively handle corrosive or harsh environments, maintaining their functionality and longevity in challenging industrial applications.

China factory Ss1114 -a Steel Engineering Class Conveyor Chain for Sugar Mill Roller Chain for Sugar Industry Chains  China factory Ss1114 -a Steel Engineering Class Conveyor Chain for Sugar Mill Roller Chain for Sugar Industry Chains
editor by CX 2023-10-21

China wholesaler Ss1124-A42 (B) Steel Engineering Class Conveyor Chain for Sugar Mill Roller Chain for Sugar Industry Chains

Product Description

Product Description

KASIN intermediate carrier chains operate in the most corrosive conditions brought about by continous operation in raw sugar juice.As a  consquence chains employ corrosion resistant materials . The swivel attachments allows for self allignment of the strands during operation compensating for anymismatch.

Related Products 

   

About Us

Kasin group was established in 1989, and its first product is casting carrier trolley for power & free conveyor system. In 1995, CHINAMFG purchased HangZhou Guoping Forging Factory (LYGP), a marketer of forging bolts & nuts to power & free line market in china. With this acquisition, CHINAMFG positioned itself as 1 of major parts suppliers of monorail and power & free conveyor system in china.

In 2

Material: Alloy
Structure: Roller Chain
Surface Treatment: Polishing
Feature: Fire Resistant, Oil Resistant, Heat Resistant
Link Plate Height: 38.10 mm
Pin Length: 80.60mm
Samples:
US$ 100/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

What are the signs of wear and when should an engineering chain be replaced?

Identifying signs of wear in an engineering chain is crucial for maintaining the system’s reliability and preventing unexpected failures. Here are some common signs of wear in an engineering chain that indicate it may need replacement:

1. Elongation: Over time, chains can elongate due to wear on the pins and bushings. Measure the chain’s pitch (center-to-center distance between pins) and compare it to the original pitch. If the elongation exceeds the manufacturer’s recommended limit, it’s time to replace the chain.

2. Chain Stretch: Chain stretch occurs when the chain has excessive play or slack when engaged with the sprockets. This can result from elongation and may lead to a loss of accuracy in the system’s operation.

3. Increased Noise: Excessive wear can cause the chain to produce more noise during operation. If you notice a significant increase in chain noise, it may indicate wear or inadequate lubrication.

4. Chain Damage: Inspect the chain for signs of damage, such as bent or broken links, cracked plates, or damaged rollers. Damaged components compromise the chain’s integrity and can lead to failure.

5. Rust and Corrosion: Chains used in corrosive environments may show signs of rust and corrosion. Corroded components can weaken the chain and reduce its load-carrying capacity.

6. Frequent Maintenance and Repairs: If you find yourself frequently performing maintenance and repairs on the chain, it may be an indication that it is nearing the end of its service life.

7. Chain Misalignment: Excessive wear can cause the chain to misalign with the sprockets, leading to uneven wear patterns on the chain components.

8. Loss of Tension: In applications where tension is crucial for proper chain engagement, a loss of tension could indicate wear or elongation.

9. Reduced Performance: If the system’s performance, such as speed or accuracy, is noticeably reduced, it could be due to chain wear affecting the overall functionality.

10. Maintenance Records: Keep detailed records of the chain’s maintenance and service life. Regularly inspect the chain and refer to maintenance records to determine if it has reached its recommended replacement interval.

When you observe any of these signs of wear, it’s important to replace the engineering chain promptly. Continuing to use a worn or damaged chain can lead to unexpected failures, production downtime, and potential damage to other system components. Regular inspections, proper lubrication, and timely replacement will ensure the reliability and longevity of the engineering chain in various industrial applications.

engineering chain

Can engineering chains be used for power transmission in conveyor systems?

Yes, engineering chains are commonly used for power transmission in conveyor systems. Conveyor systems are widely employed in various industries for material handling, and they require reliable and efficient power transmission methods to move heavy loads over long distances. Engineering chains are well-suited for these applications due to their robust construction, high load-carrying capacity, and versatility.

Conveyor systems often consist of a series of sprockets and a continuous loop of engineering chain that runs over these sprockets. The chain is driven by a motorized sprocket, and as it moves, it carries the conveyed material along the conveyor’s length. The design of engineering chains ensures smooth engagement with the sprockets, enabling efficient power transmission and precise material handling.

Depending on the specific requirements of the conveyor system, various types of engineering chains can be used. For instance, for applications where cleanliness is crucial, stainless steel chains with self-lubricating properties may be employed. In environments with high corrosion potential, corrosion-resistant coatings on chain components can extend the chain’s lifespan.

Furthermore, engineering chains can be customized to fit different conveyor configurations, allowing for the design of complex conveyor systems that suit specific production processes or spatial limitations.

In summary, engineering chains are an excellent choice for power transmission in conveyor systems due to their durability, load capacity, and adaptability. They ensure smooth and reliable operation, making them indispensable in material handling and conveyor applications across various industries.

engineering chain

Can engineering chains handle heavy loads and high torque requirements?

Yes, engineering chains are designed to handle heavy loads and high torque requirements, making them well-suited for various industrial applications that demand robust power transmission capabilities. The construction and materials used in engineering chains ensure their ability to withstand the stresses and forces associated with heavy loads and high torque.

Engineering chains are commonly used in heavy machinery, mining equipment, construction machinery, and other applications where substantial power transmission is necessary. Their sturdy design and precise engineering allow them to efficiently transmit power and handle the forces generated during operation.

The load capacity and torque-handling capabilities of engineering chains can vary depending on their design, size, and material. Manufacturers provide technical specifications and load ratings for different engineering chain types, enabling users to select the appropriate chain based on their specific application requirements.

In summary, engineering chains are well-equipped to handle heavy loads and high torque requirements, making them reliable and effective components in industrial systems that demand strength, durability, and efficient power transmission.

China wholesaler Ss1124-A42 (B) Steel Engineering Class Conveyor Chain for Sugar Mill Roller Chain for Sugar Industry Chains  China wholesaler Ss1124-A42 (B) Steel Engineering Class Conveyor Chain for Sugar Mill Roller Chain for Sugar Industry Chains
editor by CX 2023-10-20

China Good quality Industrial Transmission Sugar Mill Straight Conveyor Roller Chain Alloy/Carbon Steel Engineering Chain

Product Description

CHINAMFG rollers enhance rotation on the bushing while reducing impact loads on the sprocket tooth during operation.

All components are heat treated to achieve maximum strength.

Pre-loaded during the manufacturing process to minimize initial elongation.

Hot dipped lubrication ensures 100% lubrication of all chain components to extend wear life and reduce maintenance costs.

CHAIN
NO.
PITCH BUSH
WIDTH
ROLLER
DIA
PIN PLATE MIN.
TENSILE
STRENGTH
MAX.
TENSILE
STRENGTH
WEIGHT
d L1 L2 H t/T
mm mm mm mm mm mm mm mm KN/min KN/min kg/m
US101.6 101.60 31.80 57.15 15.88 34.40 38.40 38.10 6.40 72.3 8.20 11.67
P101.6-R47 101.60 30.00 47.00 15.88 41.00 45.00 41.00 10.00 242.0 19.40 17.98
US127 127.00 38.40 69.85 19.00 45.10 51.40 50.80 9.60 180.0 20.30 19.22
P152.4-R66.7 152.40 30.00 66.70 26.92 35.50 41.50 50.80 8.00 167.0 13.40 16.11
C9060 152.40 37.70 69.85 18.90 45.00 49.30 50.80 9.50 250.0 28.20 17.20
C 0571 1 152.40 37.70 69.85 18.90 44.90 50.30 57.20 9.50 377.9 28.20 18.74
C 0571 3 152.40 38.00 76.20 23.83 47.10 54.90 61.90 10.30 635.0 36.10 22.27
1796 152.40 37.80 69.85 76.20 73.00 22.23 43.90 53.20 57.20 9.50 444.5 33.30 18.50 19.50 19.20

Usage: Transmission Chain, Conveyor Chain, Dedicated Special Chain, Roller Chain
Material: Alloy/Carbon Steel
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: 4"*6"
Structure: Roller Chain
Samples:
US$ 10/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

Can engineering chains be used in overhead or inverted applications?

Yes, engineering chains can be used in both overhead and inverted applications, provided they are properly selected and installed. These types of applications are common in various industries, including material handling, automotive, and food processing. Engineering chains are versatile and well-suited for such applications due to their robust construction, flexibility, and ability to handle heavy loads.

Overhead applications involve suspending the chain from overhead beams or structures, while inverted applications require the chain to run on the underside of the conveyor or equipment. Some factors to consider when using engineering chains in these applications include:

  1. Corrosion Resistance: For overhead applications in outdoor environments or areas with exposure to moisture, it is essential to use engineering chains made from corrosion-resistant materials, such as stainless steel, to prevent rust and ensure longevity.
  2. Lubrication: Proper and regular lubrication is crucial for chains in both overhead and inverted applications to reduce friction, wear, and noise levels. Lubrication also helps protect the chain from contaminants and moisture.
  3. Load Capacity: Ensure that the engineering chain selected has a sufficient load capacity to handle the weight of the conveyed materials or equipment in the application.
  4. Installation: Proper installation is critical for the smooth operation of the chain in overhead and inverted applications. Correct tensioning and alignment will help prevent premature wear and improve overall performance.
  5. Chain Speed: Consider the speed at which the chain will be running in the application, as higher speeds may require additional considerations in terms of lubrication and wear.

By taking these factors into account and following the manufacturer’s guidelines for installation, lubrication, and maintenance, engineering chains can be used effectively in overhead and inverted applications. They offer reliable and efficient power transmission and material handling solutions, making them valuable components in a wide range of industrial processes and systems.

engineering chain

Can engineering chains be used in vertical lifting applications?

Yes, engineering chains can be used in vertical lifting applications, and they are commonly employed in various industries for this purpose. Vertical lifting applications require a reliable and robust power transmission solution, and engineering chains are well-suited to meet these demands.

1. High Load Capacity: Engineering chains are designed to handle heavy loads, making them suitable for vertical lifting applications where substantial weights need to be lifted and moved.

2. Safety Features: Many engineering chains used in lifting applications are designed with safety features, such as chain guides or guards, to prevent the chain from derailing or jumping off the sprockets during operation.

3. Controlled Motion: Engineering chains offer precise control over the lifting motion, which is crucial for vertical lifting tasks that require accuracy and stability.

4. Reliability: In vertical lifting applications, the chain must operate consistently and reliably to ensure the safety of workers and equipment. Engineering chains are known for their durability and long service life, making them a dependable choice for such critical tasks.

5. Customization: Engineering chains can be customized to fit specific vertical lifting applications. Different chain types, sizes, and attachments can be chosen to optimize performance and efficiency for a particular lifting task.

6. Lubrication: Proper lubrication is essential for engineering chains used in vertical lifting applications to minimize friction and wear, ensuring smooth and efficient operation.

7. Compliance: Depending on the industry and application, engineering chains may need to comply with specific safety standards and regulations, such as ISO or ANSI standards.

Overall, engineering chains are a reliable and versatile option for vertical lifting applications, providing the necessary strength, control, and safety required for lifting heavy loads with precision and efficiency.

engineering chain

Can engineering chains be used in corrosive or harsh environments?

Yes, engineering chains can be designed and manufactured to withstand corrosive or harsh environments. When operating in such conditions, it is crucial to select the appropriate materials and coatings for the chain to ensure its durability and performance. Here are some considerations for using engineering chains in corrosive or harsh environments:

1. Material Selection: Choose materials that have high corrosion resistance, such as stainless steel or nickel-plated chains. These materials can withstand exposure to moisture, chemicals, and other corrosive agents.

2. Coatings and Surface Treatments: Applying specialized coatings or surface treatments to the chain can further enhance its corrosion resistance. Common coatings include zinc plating, chromate conversion coating, and polymer coatings.

3. Sealed Joints: Opt for engineering chains with sealed joints or special seals to protect the internal components from contaminants and moisture, reducing the risk of corrosion.

4. Environmental Ratings: Some engineering chains may come with specific environmental ratings that indicate their suitability for certain conditions. Check these ratings to ensure the chain is appropriate for the intended environment.

5. Regular Maintenance: Even with corrosion-resistant materials and coatings, regular maintenance is essential. Keep the chain clean, lubricated, and free from debris to prevent corrosion and premature wear.

6. Compatibility with Other Components: Ensure that all components in the chain system, such as sprockets and bearings, are also suitable for use in corrosive environments.

7. Temperature Considerations: Take into account the operating temperature range of the environment. Some materials may perform differently at extreme temperatures, affecting the chain’s overall performance.

8. Chemical Exposure: If the chain will be exposed to specific chemicals or substances, verify that the chosen materials and coatings are resistant to those chemicals.

By carefully selecting the right materials, coatings, and design features, engineering chains can effectively handle corrosive or harsh environments, maintaining their functionality and longevity in challenging industrial applications.

China Good quality Industrial Transmission Sugar Mill Straight Conveyor Roller Chain Alloy/Carbon Steel Engineering Chain  China Good quality Industrial Transmission Sugar Mill Straight Conveyor Roller Chain Alloy/Carbon Steel Engineering Chain
editor by CX 2023-10-19

China supplier Wholesale Engineering Closed Steel Drag Chain

Product Description

Usage characteristics of steel towing chain:
It is suitable for reciprocating occasions, and can play a role in traction and protection of built-in cables, oil pipes, gas pipes, water pipes, etc. Each section of the steel tow chain can be opened, which is convenient for installation and maintenance. Low movement noise, high speed movement. Steel drag chain has been widely used in CNC machine tools, electronic equipment, stone machinery, glass machinery, door and window machinery, injection molding machine, manipulator, lifting and transportation equipment, automated warehouse, etc.

Warm tip:
The steel drag chain can carry a large number of cables and oil pipes with heavy weight, and its free suspension length is large. The support plate can be made according to customers’ needs, and it is suitable for all mobile machines, etc. Its bending radius is 75-650mm, and the height of the chain plate is 40-145mm, which can be arbitrarily selected. The fixing of the towing chain can be selected according to the position of the machine tool.

 

 

We are a manufacturer specializing in the production of machinery and equipment for 18 years, is a joint venture between China and Germany, all the company’s products have passed the IS90001 quality certification system certification, with 1 AMADA bending machine, 1 TAILIFT fast bending machine, 2 TAILIFT shearing machine, 1 German fast cutting machine, 1 Haitian injection molding machine, and other equipment more than 30 sets, Specializing in the production of various machinery and equipment, to become a large supplier at home and abroad. At your service

 

After-sales Service: Online
Warranty: Online
Logo Printing: Without Logo Printing
Certification: ISO 9001:2008, ISO 9001:2000, CE
Color: Silver White
Apply to: CNC Machine Tools, Electronic Equipment, Stone Mac
Customization:
Available

|

Customized Request

engineering chain

What are the noise and vibration characteristics of engineering chains?

Engineering chains, like other types of roller chains, can produce noise and vibrations during their operation. The noise and vibration characteristics of engineering chains depend on several factors:

  • Lubrication: Proper lubrication of the chain can help reduce friction between the chain’s components, leading to smoother operation and lower noise levels.
  • Chain Condition: A well-maintained chain with proper tension and minimal wear is likely to produce less noise and vibration compared to a worn or damaged chain.
  • Alignment: Proper alignment of the sprockets and the chain is essential to minimize lateral forces, which can contribute to increased noise and vibration.
  • Load and Speed: Heavier loads and higher speeds can increase the dynamic forces within the chain, leading to more pronounced noise and vibration.
  • Environmental Factors: External factors, such as temperature, humidity, and contaminants, can influence the chain’s noise and vibration characteristics.

Chain noise and vibration can be managed through various measures:

  • Chain Design: Some chains are designed with noise reduction features, such as special profile plates or noise-dampening materials.
  • Lubrication: Using high-quality and appropriate lubricants can help reduce friction and noise.
  • Tensioning: Properly tensioned chains experience less vibration and are less likely to produce noise.
  • Maintenance: Regular inspection and maintenance can identify and address any issues that may contribute to increased noise and vibration.
  • Isolation: In some applications, adding vibration isolators or dampeners can help reduce the transmission of noise and vibrations to surrounding structures.

It’s important to consider the specific requirements of the application and consult with chain manufacturers or experts to select the most suitable engineering chain and implement noise and vibration mitigation strategies when necessary.

engineering chain

Can engineering chains be used in vertical lifting applications?

Yes, engineering chains can be used in vertical lifting applications, and they are commonly employed in various industries for this purpose. Vertical lifting applications require a reliable and robust power transmission solution, and engineering chains are well-suited to meet these demands.

1. High Load Capacity: Engineering chains are designed to handle heavy loads, making them suitable for vertical lifting applications where substantial weights need to be lifted and moved.

2. Safety Features: Many engineering chains used in lifting applications are designed with safety features, such as chain guides or guards, to prevent the chain from derailing or jumping off the sprockets during operation.

3. Controlled Motion: Engineering chains offer precise control over the lifting motion, which is crucial for vertical lifting tasks that require accuracy and stability.

4. Reliability: In vertical lifting applications, the chain must operate consistently and reliably to ensure the safety of workers and equipment. Engineering chains are known for their durability and long service life, making them a dependable choice for such critical tasks.

5. Customization: Engineering chains can be customized to fit specific vertical lifting applications. Different chain types, sizes, and attachments can be chosen to optimize performance and efficiency for a particular lifting task.

6. Lubrication: Proper lubrication is essential for engineering chains used in vertical lifting applications to minimize friction and wear, ensuring smooth and efficient operation.

7. Compliance: Depending on the industry and application, engineering chains may need to comply with specific safety standards and regulations, such as ISO or ANSI standards.

Overall, engineering chains are a reliable and versatile option for vertical lifting applications, providing the necessary strength, control, and safety required for lifting heavy loads with precision and efficiency.

engineering chain

How do engineering chains handle shock loads and impact forces?

Engineering chains are designed to handle a range of loads, including shock loads and impact forces, encountered in various industrial applications. Their ability to withstand these forces depends on several factors:

1. Material Selection: High-quality engineering chains are often made from robust materials such as alloy steel or stainless steel. These materials provide excellent strength and durability, allowing the chain to handle shock loads without permanent deformation or failure.

2. Chain Design: The design of engineering chains plays a crucial role in their ability to handle shock loads. The chain’s structure, such as the shape and size of its components, determines its load-bearing capacity and resistance to impact forces.

3. Heat Treatment: Some engineering chains undergo specific heat treatment processes to enhance their hardness and toughness. Heat-treated chains can better withstand shock loads and impact forces, making them suitable for demanding applications.

4. Fatigue Resistance: Engineering chains are designed to have good fatigue resistance, which means they can endure repeated loading cycles without failure. This property is essential for withstanding impact forces that occur intermittently in certain applications.

5. Proper Installation and Tensioning: Correct installation and appropriate tensioning of the chain are essential to ensure optimal performance under shock loads. Improper tensioning may lead to excessive stress on the chain and premature failure.

6. Chain Speed: The speed at which the chain operates can influence its ability to handle shock loads. High-speed operation may generate additional forces, so the chain must be rated to withstand these forces without exceeding its limits.

7. Regular Maintenance: Proper maintenance is crucial for extending the life of engineering chains subjected to shock loads and impact forces. Regular inspections, lubrication, and replacement of worn components are essential to keep the chain in optimal condition.

Overall, engineering chains are engineered to handle shock loads and impact forces in industrial environments. However, it is crucial to choose the right chain type, size, and material for the specific application and to follow proper installation and maintenance practices to ensure reliable and safe operation under varying load conditions.

China supplier Wholesale Engineering Closed Steel Drag Chain  China supplier Wholesale Engineering Closed Steel Drag Chain
editor by CX 2023-10-18

China Custom Engineering Plastic Cable Chain POM Chain Delrin Chain

Product Description


engineering plastic cable chain POM chain delrin chain

Advantages:

1.A complete range of specification

2.free design offer OEM & ODM

3.free sample available

4.professional service team

5.specialize CNC machining and injection over 10 years

6.Custom accept as per drawing or sample

 

Model                  

inejction POM conveyor chain

Material

POM / Nylon/ PVC or customized

Diameter 1-250mm or customized
Length 500mm,1000mmor customized 
Color Natural,White,Black,ect.
OEM & ODM Yes
Certification ISO9001,SGS,FDA,RoHS,Test Report,ect.
Free Sample Yes
Density 1.6g/ cm2
Shape sheet, rod, tube, gear, pulley, guide rail……or according to your demand
Packing Plastic bags,Cartons,Wodden case,Pallet,Container,ect.
Advantage One stop procurement
 

HangZhou Engineering Plastics Industries,aiming at providing engineering plastics and injection plastic parts. Ccompany owns whole sets of imported manufacturing machines and advanced CNC machining machines,besides advanced process tools,company technology are also tremendous.

FAQ

Q: Are you trading company or manufacturer ?

A: We are manufacturer.

Q: How long is your delivery time?

A: According to the difficulty and quantity of product processing,a reasonable arrival time will be given to you.

Q: Do you provide samples ? is it free or extra ?

A: Yes, we could offer the sample for free charge but do not pay the cost of freight.

Q: What are the after-sale services?

A: In case of quality problems, the package can be exchanged within 90 days.

 

Material: Plastic
Structure: Leaf Chain
Surface Treatment: Polishing
Chain Size: 1/2"*3/32"
Feature: Fire Resistant, Heat Resistant
Certificate: ISO9001: 2008, Test Report
Customization:
Available

|

Customized Request

engineering chain

How do engineering chains handle variable speed requirements?

Engineering chains are designed to handle variable speed requirements in power transmission systems. They are capable of accommodating a wide range of speeds without compromising their performance or durability. Here’s how engineering chains handle variable speed conditions:

  • Flexible Design: Engineering chains are constructed with a flexible design that allows them to adapt to changes in speed. The chain’s links and rollers can smoothly engage and disengage with the sprockets, ensuring efficient power transmission even at varying speeds.
  • Smooth Operation: The precision manufacturing of engineering chains ensures smooth and consistent operation across different speed ranges. This smooth operation reduces vibration and noise, minimizing wear and tear on the chain and sprockets.
  • Lubrication: Proper lubrication is essential for engineering chains to handle variable speed conditions. Lubrication reduces friction between the chain’s components, preventing premature wear and enhancing the chain’s ability to operate effectively at different speeds.
  • Load Distribution: Engineering chains distribute the transmitted load evenly across their links, reducing stress concentration points. This load distribution capability enables the chain to handle varying torque and speed requirements without compromising its strength or performance.
  • High-Quality Materials: The use of high-quality materials in engineering chains ensures their ability to withstand the rigors of variable speed applications. High-grade alloy steels or stainless steels are often used to enhance the chain’s strength, durability, and resistance to fatigue.
  • Proper Tensioning: Maintaining the appropriate tension in the engineering chain is crucial for reliable performance at varying speeds. Proper tensioning prevents chain slack and excessive wear, ensuring the chain remains engaged with the sprockets at all times.
  • Variable Pitch Chains: In some applications, engineers may opt for variable pitch chains. These chains have special designs that allow them to accommodate variable speed conditions more effectively.

By considering factors such as chain design, lubrication, load distribution, material quality, and tensioning, engineering chains can smoothly handle variable speed requirements in various industrial applications. Ensuring proper maintenance and selecting the appropriate chain type for the specific application will maximize the chain’s performance and service life.

engineering chain

Can engineering chains be used in marine or underwater applications?

Yes, engineering chains can be used in marine or underwater applications under certain conditions. However, several factors need to be considered to ensure their reliable performance and longevity in such environments:

1. Corrosion Resistance: Marine and underwater environments expose chains to the risk of corrosion due to saltwater exposure. Therefore, it’s crucial to select engineering chains made from corrosion-resistant materials such as stainless steel or special coatings to prevent rust and deterioration.

2. Sealing and Lubrication: Proper sealing and lubrication are essential to protect the chain’s internal components from water ingress and corrosion. Sealed or encapsulated chain designs with suitable lubricants can help maintain smooth operation even in wet conditions.

3. Material Selection: The choice of materials for the chain and sprockets should consider not only corrosion resistance but also the ability to withstand marine environments’ unique challenges, such as exposure to marine organisms, debris, and changing temperatures.

4. Load Capacity: Marine and underwater applications may involve heavy loads, so the engineering chain must be selected based on the specific load requirements to ensure safe and reliable operation.

5. Water Depth and Pressure: The depth of the underwater application and the resulting pressure can affect the chain’s performance. Special considerations may be necessary for deep-sea applications to withstand higher pressures.

6. Environmental Regulations: Depending on the location, there may be specific environmental regulations regarding the materials used in marine applications to prevent pollution and protect marine life.

7. Maintenance and Inspection: Regular maintenance and inspection are critical for identifying and addressing any signs of wear, corrosion, or damage in the engineering chain. Timely maintenance can extend the chain’s lifespan and ensure safe operation.

Overall, with proper material selection, sealing, lubrication, and maintenance, engineering chains can be used effectively in marine or underwater applications, providing reliable power transmission and motion control in these challenging environments.

engineering chain

Can engineering chains be used in high-speed applications?

Yes, engineering chains can be used in high-speed applications, but their suitability depends on various factors. While some engineering chains are designed to handle high-speed operation, others may not be suitable for such applications. Here are some considerations:

1. Chain Type: Different types of engineering chains have varying capabilities when it comes to high-speed operation. For example, roller chains are commonly used in industrial applications and can handle moderate to high speeds efficiently. On the other hand, conveyor chains or specialty chains may have limitations on speed due to their design and intended use.

2. Manufacturer Specifications: Check the manufacturer’s specifications and recommendations for the engineering chain you plan to use. Manufacturers often provide maximum allowable speeds for their chains based on factors such as chain size, material, and construction.

3. Lubrication and Maintenance: Proper lubrication and maintenance are critical for high-speed applications. Adequate lubrication reduces friction and wear, allowing the chain to operate smoothly at higher speeds. Regular maintenance ensures that the chain remains in good condition and minimizes the risk of unexpected failures.

4. Load and Tension: High-speed applications can place additional loads and tension on the engineering chain. It is essential to ensure that the chain can handle the increased loads and tension without stretching excessively or experiencing premature wear.

5. Environmental Conditions: Consider the environmental factors that may affect the chain’s performance at high speeds. Temperature, humidity, and the presence of contaminants can impact the chain’s wear and durability.

6. Safety Considerations: High-speed applications require careful consideration of safety measures. Ensure that all safety guidelines and regulations are followed to prevent accidents or injuries resulting from chain failure.

In summary, engineering chains can be used in high-speed applications, but it is essential to select the appropriate chain type and ensure proper maintenance and lubrication. Consulting with chain manufacturers or experts can help you determine the most suitable engineering chain for your specific high-speed application, ensuring safe and reliable operation.

China Custom Engineering Plastic Cable Chain POM Chain Delrin Chain  China Custom Engineering Plastic Cable Chain POM Chain Delrin Chain
editor by CX 2023-10-17

China supplier ISO Standard Engineering Steel Conveyor Roller Chain (S188, S110) High Quality

Product Description

Engineering Steel Roller Chain (S188,S110)

Advanced Technology
1. Ball Drift
2. Shot Peened Parts
3. Design Of Link Plate Waist
Packaging According To The Customers’ Needs
To meet the customers’ requirements is our best subject! 

Product Detail:

Pack detail:

Company Detail:

TAI is 1 of a professional exporter with exporting POWER TRANSMISSION PARTS: Roller chains, s. S. Chains, agricultural chains, steel detachable chains, special chains, sprockets, s. S. Sprockets, HRC couplings, pulleys, bushes etc. All these products have been supplied regularly to World Wide for over 15 years. 

 

Welcome contact for more details.

Ava Gao(Sales)
Tran-Auto Industries Co.,Limited
716 Gold River Center,NO.88 Shishan Rd.,
New District,HangZhou,P.R.China.P.C.:215011
 
 
tran-auto
 

 

FV Type Conveyor Chain
FV Type Conveyor Chain Attachment
FV Type Hollow Pin Conveyor Chain
FV Type Scraper Conveyor Chain
FVT Type Conveyor Chain
M Type Conveyor Chain
M Type Conveyor Chain Attachment
M Type Hollow Pin Conveyor Chain
M Type Scraper Conveyor Chain
YS Type Conveyor Chain Attachment
Sugar Chain
SMW Type Straight Sidebar Chain For Sugar Chain
Stainless Steel Roller Chain
Stainless Steel Hollow Pin Chain
Motorcycle Transmission Chain
Sports Motorcycle Chain
Motorcycle Engine Mechanism Chain(Timing Chain)
Silent Motorcycle Chain
Transmission Kit
O/X-Ring Chain
Walk Tractor Chain
Combine Chain
ZGS38 Combine Chain
ZGSB Combine Chain Attachment
Rice Harvester Chain
216 BF1 And CA650F1 Agricultural Chain
S Type And C Type Steel Agricultural Chain
S Type And C Type Steel Agricultural Chain Attachment
Lumber Conveyor Chain and Attachment
Conveyor Chain
Engineering Steel Bush Chain
Palm Oil Mill Chain
FV Series Conveyor Chain
Haitai Chain
Conveyor Chain(Metric series)
MT Series Conveyor Chain
M Series Conveyor Chain With Attachments
RF Type Conveyor Chain Basic Series
Scraper Conveyor Chain(without hole and with hole)
Steel Pintle Chain
Tabacco Machine Chain
Mesh Belt Conveyor Chain
Sugar Chain
SMW Type Straught Chain For Sugar Machine
Steel Pintle Chain
 

Usage: Conveyor Chain
Material: Carbon Steel
Surface Treatment: Polishing
Feature: Heat Resistant
Chain Size: All
Structure: Welded Chain
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

Can engineering chains be used in high-temperature environments?

Yes, engineering chains can be used in high-temperature environments, but their performance depends on the type of material they are made of and the specific temperature conditions they are exposed to. Here are some considerations for using engineering chains in high-temperature environments:

  • Material Selection: Chains made from heat-resistant materials, such as stainless steel or special alloy steels, are suitable for high-temperature applications. These materials offer increased resistance to heat, oxidation, and corrosion.
  • Lubrication: Proper lubrication is critical when using engineering chains in high-temperature environments. High-temperature lubricants that can withstand the specific temperature range are essential to reduce friction and wear between the chain’s components.
  • Heat Dissipation: In high-temperature environments, the heat generated by the chain’s operation needs to be dissipated effectively to prevent excessive temperature rise. Adequate ventilation or cooling mechanisms may be required to maintain the chain within a safe operating temperature range.
  • Chain Design: Chains intended for high-temperature use may have specific design features that enhance their heat resistance and performance. These design modifications can include heat-resistant coatings, special alloys, or heat-treated components.
  • Operating Conditions: The operating conditions, such as the temperature range and the duration of exposure to high temperatures, should be carefully evaluated to ensure the chain’s material and lubrication are suitable for the specific application.
  • Inspections and Maintenance: Regular inspections and maintenance are crucial to monitor the chain’s condition and performance in high-temperature environments. Any signs of wear, elongation, or damage should be addressed promptly to prevent potential failures.

When properly selected, lubricated, and maintained, engineering chains made from heat-resistant materials can reliably operate in high-temperature environments. It’s essential to consult with chain manufacturers or experts to determine the most suitable chain type and material for a specific high-temperature application.

engineering chain

What are the environmental considerations when using engineering chains?

When using engineering chains in various applications, there are several environmental considerations to keep in mind to ensure optimal performance, longevity, and safety. These considerations include:

1. Temperature: Extreme temperatures, whether high or low, can affect the performance and lifespan of engineering chains. Proper lubrication and material selection are essential to ensure the chain can withstand the temperature conditions in the operating environment.

2. Corrosive Environments: In corrosive environments, such as those with exposure to chemicals, saltwater, or other corrosive substances, it’s crucial to choose engineering chains made from corrosion-resistant materials, such as stainless steel or coatings that provide protection against corrosion.

3. Dust and Contaminants: Dust, dirt, and other contaminants can accumulate on the chain, leading to increased wear and reduced efficiency. Regular cleaning and proper chain guarding can help minimize the impact of these environmental factors.

4. Moisture and Water Exposure: For applications exposed to moisture or water, selecting chains with appropriate sealing or corrosion-resistant coatings is important to prevent rust and maintain performance.

5. UV Exposure: Outdoor applications exposed to direct sunlight can be subject to UV degradation. Using engineering chains with UV-resistant materials or protective coatings can help mitigate the effects of UV exposure.

6. Noise and Vibration: Certain environments may have strict noise regulations. In such cases, using chain guides, dampers, or other noise-reducing features can help lower the noise and vibration levels produced by the chain.

7. Load Variation: Environmental conditions may lead to variations in the load on the chain. Understanding and accommodating load variations is crucial for ensuring the chain’s reliability and preventing premature failure.

8. Compliance with Regulations: Some industries have specific environmental regulations that must be adhered to. It’s essential to select engineering chains that comply with these regulations to maintain a safe and environmentally friendly operation.

9. Maintenance and Lubrication: Proper and regular maintenance, including lubrication, is critical to ensure the chain’s smooth operation and extend its service life in any environment.

Considering these environmental factors will help in selecting the right engineering chain for a particular application, ensuring optimal performance, and reducing the risk of chain failure due to environmental conditions.

engineering chain

How do you select the right size and pitch for an engineering chain?

Choosing the correct size and pitch for an engineering chain is essential to ensure optimal performance, longevity, and safety in industrial applications. Here are the steps to guide you in selecting the right engineering chain size and pitch:

1. Identify the Application Requirements: Understand the specific requirements of the application where the engineering chain will be used. Consider factors such as the load to be carried, the speed of operation, the environmental conditions, and any special considerations like corrosion resistance or high-temperature requirements.

2. Determine the Chain Type: Engineering chains come in various types, such as roller chains, conveyor chains, drive chains, and specialty chains. Choose the chain type that best matches the intended application and the type of motion required.

3. Calculate the Chain Pitch: The chain pitch refers to the distance between each roller pin or attachment point on the chain. To calculate the chain pitch, measure the center-to-center distance of any three consecutive pins and divide it by two. Ensure that the calculated pitch matches the chain’s specified pitch.

4. Calculate the Chain Length: Determine the required length of the engineering chain by considering the distance between the sprockets and any additional slack or tension needed for smooth operation. Ensure that the selected chain length is appropriate for the application and fits well without being overly tight or loose.

5. Check Load Capacity and Strength: Refer to the manufacturer’s data or engineering chain catalog to determine the load capacity and strength of the selected chain. Ensure that the chain’s load capacity exceeds the maximum loads expected in the application to prevent premature wear or failure.

6. Consider the Environmental Factors: Take into account any environmental factors that may affect the performance of the engineering chain, such as temperature, moisture, chemicals, or abrasive materials. Choose a chain material that can withstand the specific environmental conditions to ensure longevity.

7. Consult with Manufacturers or Suppliers: If you are uncertain about selecting the right engineering chain, do not hesitate to consult with chain manufacturers or suppliers. They can provide valuable insights and recommendations based on their expertise and knowledge of various applications.

By following these steps and carefully evaluating the application’s requirements, you can select the appropriate size and pitch for an engineering chain, ensuring reliable and efficient operation in your specific industrial setting.

China supplier ISO Standard Engineering Steel Conveyor Roller Chain (S188, S110) High Quality  China supplier ISO Standard Engineering Steel Conveyor Roller Chain (S188, S110) High Quality
editor by CX 2023-10-16

China manufacturer Factory Price Alloy Material High Strength Engineering Industrial Heavy Duty Stainless Steel Chain

Product Description

Factory Price Alloy Material High Strength Engineering Industrial Heavy Duty Stainless Steel Chain
 

Product Description


1. Material: Alloy steel & Stainless steel
2. Surface treatment: Shot peening / Zinc-plated / Nickel-plated / Dacromet-plated
3. Characteristic: Chain plate hole finally passed ball extrusion to ensure maximum fatigue resistance, parts of shot peening treatment makes the chain and the sleeve has a higher fatigue strength.
 

Materials Available  1. Stainless Steel: SS304, SS316, etc
2. Alloy Steel: 45Mn, 42CrMo, etc
3. OEM according to your request
Surface Treatment Shot peening, Polishing, Oxygenation, Blackening, Zinc-plated, Nickel-plated, Anodized, etc.
Characteristic Fire Resistant, Oil Resistant, Heat Resistant
Application Agricultural machine
Design criterion ISO DIN ANSI & Customer’s Drawing
Size Customer’s Drawing & ISO standard 
Package Wooden Case / Container and pallet, or made-to-order
Certificate ISO9001: 2008 
Advantage First quality, best service, competitive price, fast delivery
Delivery Time 20 days for samples. 45 days for official order.

 

Detailed Photos


View more products,please click here…

 

Company Profile

Material: Alloy/Carbon Steel
Sample: for Free
Transport Package: Plastic Bag+Carton Box+Plywood Case
Specification: S55K1, S62A2K1
Trademark: made-to-order
Origin: China
Samples:
US$ 0/Meter
1 Meter(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

engineering chain

How do engineering chains handle misalignment between sprockets?

Engineering chains are designed to handle some degree of misalignment between sprockets. Misalignment can occur due to various factors such as improper installation, wear and elongation of the chain, or inaccuracies in the machinery. While some misalignment is inevitable in many industrial applications, excessive misalignment should be avoided to ensure optimal chain performance and longevity.

Here’s how engineering chains handle misalignment:

  1. Flexible Construction: Engineering chains are constructed with flexible components such as pins, rollers, and bushings. This design allows the chain to adapt to minor misalignments without putting excessive stress on the chain or sprockets.
  2. Articulating Joints: The articulating joints in the chain allow it to articulate smoothly around the sprockets, accommodating minor misalignment during the rotation. This helps reduce wear on the chain and sprockets.
  3. Tolerance for Misalignment: Manufacturers provide specifications for the allowable misalignment between sprockets. Engineering chains are designed to handle a certain level of misalignment within these tolerances without significantly affecting their performance.
  4. Proper Installation: Correct installation of the engineering chain is crucial to minimizing misalignment issues. Ensuring proper tension, alignment, and center-to-center distance between sprockets can help reduce misalignment and prolong chain life.
  5. Regular Maintenance: Regular maintenance, including chain inspection and lubrication, can help identify and address misalignment issues early on. Promptly correcting misalignment can prevent further damage and ensure efficient chain operation.
  6. Alignment Devices: In some cases, alignment devices or tools may be used during installation to ensure accurate alignment between the sprockets. These devices can help improve chain performance and reduce wear caused by misalignment.

It is essential to follow the manufacturer’s guidelines for chain installation, maintenance, and alignment to optimize the performance and service life of engineering chains. Addressing misalignment issues promptly and keeping the chain in proper working condition will contribute to the overall reliability and efficiency of the machinery or equipment in which the chain is used.

engineering chain

Can engineering chains be used in vertical lifting applications?

Yes, engineering chains can be used in vertical lifting applications, and they are commonly employed in various industries for this purpose. Vertical lifting applications require a reliable and robust power transmission solution, and engineering chains are well-suited to meet these demands.

1. High Load Capacity: Engineering chains are designed to handle heavy loads, making them suitable for vertical lifting applications where substantial weights need to be lifted and moved.

2. Safety Features: Many engineering chains used in lifting applications are designed with safety features, such as chain guides or guards, to prevent the chain from derailing or jumping off the sprockets during operation.

3. Controlled Motion: Engineering chains offer precise control over the lifting motion, which is crucial for vertical lifting tasks that require accuracy and stability.

4. Reliability: In vertical lifting applications, the chain must operate consistently and reliably to ensure the safety of workers and equipment. Engineering chains are known for their durability and long service life, making them a dependable choice for such critical tasks.

5. Customization: Engineering chains can be customized to fit specific vertical lifting applications. Different chain types, sizes, and attachments can be chosen to optimize performance and efficiency for a particular lifting task.

6. Lubrication: Proper lubrication is essential for engineering chains used in vertical lifting applications to minimize friction and wear, ensuring smooth and efficient operation.

7. Compliance: Depending on the industry and application, engineering chains may need to comply with specific safety standards and regulations, such as ISO or ANSI standards.

Overall, engineering chains are a reliable and versatile option for vertical lifting applications, providing the necessary strength, control, and safety required for lifting heavy loads with precision and efficiency.

engineering chain

Can engineering chains handle heavy loads and high torque requirements?

Yes, engineering chains are designed to handle heavy loads and high torque requirements, making them well-suited for various industrial applications that demand robust power transmission capabilities. The construction and materials used in engineering chains ensure their ability to withstand the stresses and forces associated with heavy loads and high torque.

Engineering chains are commonly used in heavy machinery, mining equipment, construction machinery, and other applications where substantial power transmission is necessary. Their sturdy design and precise engineering allow them to efficiently transmit power and handle the forces generated during operation.

The load capacity and torque-handling capabilities of engineering chains can vary depending on their design, size, and material. Manufacturers provide technical specifications and load ratings for different engineering chain types, enabling users to select the appropriate chain based on their specific application requirements.

In summary, engineering chains are well-equipped to handle heavy loads and high torque requirements, making them reliable and effective components in industrial systems that demand strength, durability, and efficient power transmission.

China manufacturer Factory Price Alloy Material High Strength Engineering Industrial Heavy Duty Stainless Steel Chain  China manufacturer Factory Price Alloy Material High Strength Engineering Industrial Heavy Duty Stainless Steel Chain
editor by CX 2023-10-12

China Good quality Heavy Duty Engineering Chains 81X 81xh 81xhh 81xhs Cranked Link Transmission Chains

Product Description

Heavy Duty Engineering Chains 81X 81XH 81XHH 81XHS Cranked link Transmission Chains

Product Description

 

81X chain features a 2.609″ pitch and is categorized as a steel bushed roller chain within the engineer class of chains. Its
commonly referred to as an 81X conveyor chain due to the straight side-bar design and common usage within conveying applications. Most commonly, this chain is found in the lumber and forestry industry and is available with upgrades such as “chrome pins” or heavier-duty side-bars. Our high-strength chain is manufactured to ANSI specifications and dimensionally interchanges with other brands, meaning sprocket replacement is not necessary. We also supply 81X sprockets, attachments, and we have a Made in USA 81X chain breaker. Because of its high-strength and effective design.

 

This chain is found in a wide range of applications including; asphalt paving, car wash, citrus processing, clean grain and return elevators, fertilizer conveying, food processing, forest products, grain handling, manure spreaders, produce wash-down and many more!

 

 

 

Design and Processing Advantages
1. Made of medium carbon steel, the offset sidebar roller chain undergoes processing steps like heating, bending, as well as cold pressing after annealing.
2. The pin hole is created by impact extrusion, which increases the inner surface smoothness for the hole. Thus, the matching area between the sidebar and the pin is increased, and the pins offer higher protection against heavy loads.
3. The integral heat treatment for the chain plates and rollers ensures high tensile strength. The pins additionally undergo
high-frequency induction heating for the surface after integral heat treatment, ensuring high strength, high surface hardness, and wearing resistance as well. The surface carburizing treatment for the bushings or sleeves guarantees high tensile strength, superb surface hardness, and improved impact resistance. These make sure the heavy duty transmission chain has extended service life.

Our range of 81X chain and 81X sprockets covers the most popular styles available worldwide. It is a 2.609 pitch, straight sidebar chain, and ready for immediate delivery to your site.

81X chains are commonly found in the timber industry and used for conveyors, stackers, sorters, trimmer saws, and un-scramblers. Due to their low-cost these chains are found in a wide variety of applications & industries.

The styles of 81X chain that we stock are manufactured from different materials, plate thickness and sidebar heights. This selection enables you to have higher working loads and extend your chains service life.

Our range of 81X chains and sprockets in CHINAMFG are available in different tiers of quality and price. All chains come with CHINAMFG bush and roller, with fully heat-treated components and are manufactured to commercial standards for clearance, fits and limits.

We stock 81X chain in 10-foot rolls and stock a full range of rivets, connector links, attachments, and sprockets.

Product Parameters

 

Chain NO.

 

Pitch

Roller Diamter

 

Width Between inner Plates

Pin Diameter

Pin Length

 

lnner Plate Depth

 

Plate Thick-

-ness

 

Ultimate Tensile Strength

 

Average Tensile Strength

P

d1 max

b1 min

d2 max

L
max

Lc max

h2 max

t/T max

Q
min

mm

mm

mm

mm

mm

mm

mm

mm

kN

81X

66.27

23.00

27.00

11.10

49.0

53.5

28.50

4.00

106.7

81XH

66.27

23.00

27.78

11.10

60.7

65.1

31.35

7.94/5.55

151.9

81XHH

66.27

23.00

27.78

11.10

65.6

70.0

31.35

7.94

191.1

81XHS

66.27

23.00

27.00

11.10

63.6

68.0

31.80

7.60

152.0

Contact us: We care about our valued buyers, if you have any questions, our Customer Service staffs will be very glad to help you. We try our best to reply to your emails as soon as possible, however, due to high volume of daily incoming emails and time zone difference, we may not be able to reply your emails immediately. Please allow 24 business hours for us to response.

Related products

 

Usage: Transmission Chain, Drag Chain, Conveyor Chain, Dedicated Special Chain
Material: Steel
Surface Treatment: Oil Blooming
Feature: Oil Resistant
Chain Size: 1/2"*3/32"
Structure: Roller Chain
Samples:
US$ 9999/Piece
1 Piece(Min.Order)

|
Request Sample

engineering chain

Can engineering chains be used for power transmission in automotive applications?

Yes, engineering chains can be used for power transmission in automotive applications. They are commonly employed in various automotive systems that require reliable and efficient power transfer. Here are some automotive applications where engineering chains are used:

  • Timing Chains: In internal combustion engines, timing chains are critical for synchronizing the camshaft and crankshaft’s rotation. They ensure that the engine’s valves open and close at the precise time, optimizing engine performance and fuel efficiency.
  • Drive Chains: Engineering chains are used in automotive drive systems, especially in older vehicles or specific applications where a chain drive is preferred over a belt or gear drive. Drive chains can be found in various components, such as transfer cases, rear-wheel-drive systems, and motorcycle drives.
  • Steering System: In some automotive steering systems, engineering chains are used to transmit the rotational force from the steering wheel to the steering rack or gearbox, enabling vehicle control.
  • Transfer Cases: In four-wheel-drive and all-wheel-drive systems, engineering chains are utilized in transfer cases to distribute power between the front and rear axles, allowing for better traction and handling on various terrains.
  • Suspension Systems: Some automotive suspension systems incorporate engineering chains to support components like torsion bars or assist in adjusting suspension height in certain vehicles.
  • Exhaust System: In exhaust gas recirculation (EGR) systems, engineering chains may be employed to control the flow of exhaust gases, helping to reduce emissions.

It is important to note that while engineering chains are suitable for certain automotive applications, modern vehicles often utilize other methods of power transmission, such as timing belts and gears, due to their quieter operation and reduced maintenance needs. The choice of power transmission method in automotive applications depends on factors like design requirements, space limitations, cost considerations, and desired performance characteristics.

engineering chain

Can engineering chains be used in vertical lifting applications?

Yes, engineering chains can be used in vertical lifting applications, and they are commonly employed in various industries for this purpose. Vertical lifting applications require a reliable and robust power transmission solution, and engineering chains are well-suited to meet these demands.

1. High Load Capacity: Engineering chains are designed to handle heavy loads, making them suitable for vertical lifting applications where substantial weights need to be lifted and moved.

2. Safety Features: Many engineering chains used in lifting applications are designed with safety features, such as chain guides or guards, to prevent the chain from derailing or jumping off the sprockets during operation.

3. Controlled Motion: Engineering chains offer precise control over the lifting motion, which is crucial for vertical lifting tasks that require accuracy and stability.

4. Reliability: In vertical lifting applications, the chain must operate consistently and reliably to ensure the safety of workers and equipment. Engineering chains are known for their durability and long service life, making them a dependable choice for such critical tasks.

5. Customization: Engineering chains can be customized to fit specific vertical lifting applications. Different chain types, sizes, and attachments can be chosen to optimize performance and efficiency for a particular lifting task.

6. Lubrication: Proper lubrication is essential for engineering chains used in vertical lifting applications to minimize friction and wear, ensuring smooth and efficient operation.

7. Compliance: Depending on the industry and application, engineering chains may need to comply with specific safety standards and regulations, such as ISO or ANSI standards.

Overall, engineering chains are a reliable and versatile option for vertical lifting applications, providing the necessary strength, control, and safety required for lifting heavy loads with precision and efficiency.

engineering chain

What are the advantages of using an engineering chain in industrial applications?

Engineering chains offer several advantages that make them highly suitable for a wide range of industrial applications:

  • Robust and Durable: Engineering chains are built to withstand heavy loads, harsh environmental conditions, and abrasive materials commonly found in industrial settings. Their robust construction ensures long-lasting performance and reduces the frequency of replacements, contributing to cost-effectiveness.
  • Versatility: With various types and configurations available, engineering chains are highly versatile. They can be adapted to a wide array of applications, such as material handling, conveyor systems, bucket elevators, and more. Different attachments and accessories further enhance their adaptability for specific tasks.
  • Specialized Variants: The market offers a diverse selection of engineering chains with specialty variants designed for specific industries. Whether it’s mining, agriculture, automotive, or food processing, there is likely an engineering chain optimized for the unique demands of each application.
  • High Load Capacity: Engineering chains are capable of handling heavy loads, making them suitable for heavy machinery, lifting equipment, and other industrial applications requiring substantial power transmission capabilities.
  • Efficient Power Transmission: The design of engineering chains ensures smooth and efficient power transmission, reducing energy losses and improving overall system performance.
  • Attachments and Accessories: Many engineering chains come with pre-installed or customizable attachments that enable them to perform specialized tasks. These attachments can include slats, buckets, rollers, and other components, enhancing their ability to carry, grip, or convey materials as needed.
  • Reliable Performance: Due to their robust design and precise engineering, these chains provide reliable and consistent performance even under challenging conditions, contributing to increased productivity and reduced downtime.
  • Wide Range of Materials: Engineering chains can be manufactured from various materials, including carbon steel, stainless steel, and plastic, allowing for compatibility with different operating environments and industries.
  • Cost-Effective Solutions: Despite their higher initial cost compared to standard roller chains, engineering chains often prove to be cost-effective in the long run due to their extended service life and reduced maintenance needs.

In summary, engineering chains offer durability, versatility, and specialized features that make them an excellent choice for industrial applications where reliable and efficient power transmission is essential. Their ability to handle heavy loads, varied environments, and specific tasks sets them apart as a valuable component in numerous industrial processes.

China Good quality Heavy Duty Engineering Chains 81X 81xh 81xhh 81xhs Cranked Link Transmission Chains  China Good quality Heavy Duty Engineering Chains 81X 81xh 81xhh 81xhs Cranked Link Transmission Chains
editor by CX 2023-10-11

China manufacturer Industrial Engineering Chains for Transmission Escalator

Product Description

We can supply various kinds chains for escalator, any needs please feel free to contact us for more information. 

About Us

With more than 30 years’ experience in machinery industry, Mr.Qian has the factory of his own in 2001.

Since 2006, our factory has developed from a factory that mainly provides machinery processing services to a specialized manufacturer of a series of guide rails for elevators.

We exported from 2008, till now we have exported many countries.

Our factory has passed ISO 9001 certificate. And our guide rails has passed type test in our industry.
      

After several years in this field,now we also can produce and supply some other elevator parts, if they exported with the rails ,the price will be much better. For more information please refer to our website:

       tcxinxing
    

Product Description

Xihu (West Lake) Dis. system; Safety System;Traction System;Electric System;Door System;Cabin and CW parts
Please contact with us for your information.

   

 

Xihu (West Lake) Dis. System Safety System Traction System Electric System
Xihu (West Lake) Dis. rail Light Curtain Rope Attachment elevator fan
Rail clip Safety Gear Wire Rope elevator switch
Bolts Speed Governor Traction Machine Inspection Box
Rail bracket Rope Brake Deflector Sheave Hall Lantern
Xihu (West Lake) Dis. shoes Buffer Anti-vibration Pad Push Button
Compensation Chain     Display
Xihu (West Lake) Dis. Device COP,LOP
  Inverter
Door System ARD
  Elevator Cable
Cabin and CW parts  
 
Escalator parts

 

      

 

Type: Light
Load Capacity: 4500 Persons/H
Use of Occasions: Public Traffic
Speed: 0.5M/S
Slope Angle: 30°
Width of Stair: 800mm
Customization:
Available

|

Customized Request

engineering chain

How do engineering chains handle variable speed requirements?

Engineering chains are designed to handle variable speed requirements in power transmission systems. They are capable of accommodating a wide range of speeds without compromising their performance or durability. Here’s how engineering chains handle variable speed conditions:

  • Flexible Design: Engineering chains are constructed with a flexible design that allows them to adapt to changes in speed. The chain’s links and rollers can smoothly engage and disengage with the sprockets, ensuring efficient power transmission even at varying speeds.
  • Smooth Operation: The precision manufacturing of engineering chains ensures smooth and consistent operation across different speed ranges. This smooth operation reduces vibration and noise, minimizing wear and tear on the chain and sprockets.
  • Lubrication: Proper lubrication is essential for engineering chains to handle variable speed conditions. Lubrication reduces friction between the chain’s components, preventing premature wear and enhancing the chain’s ability to operate effectively at different speeds.
  • Load Distribution: Engineering chains distribute the transmitted load evenly across their links, reducing stress concentration points. This load distribution capability enables the chain to handle varying torque and speed requirements without compromising its strength or performance.
  • High-Quality Materials: The use of high-quality materials in engineering chains ensures their ability to withstand the rigors of variable speed applications. High-grade alloy steels or stainless steels are often used to enhance the chain’s strength, durability, and resistance to fatigue.
  • Proper Tensioning: Maintaining the appropriate tension in the engineering chain is crucial for reliable performance at varying speeds. Proper tensioning prevents chain slack and excessive wear, ensuring the chain remains engaged with the sprockets at all times.
  • Variable Pitch Chains: In some applications, engineers may opt for variable pitch chains. These chains have special designs that allow them to accommodate variable speed conditions more effectively.

By considering factors such as chain design, lubrication, load distribution, material quality, and tensioning, engineering chains can smoothly handle variable speed requirements in various industrial applications. Ensuring proper maintenance and selecting the appropriate chain type for the specific application will maximize the chain’s performance and service life.

engineering chain

Can engineering chains be used in food processing or packaging industries?

Yes, engineering chains can be used in food processing and packaging industries under certain conditions. However, several considerations must be taken into account to ensure the safe and hygienic use of engineering chains in such applications.

Key factors to consider when using engineering chains in the food industry include:

  • Food-Grade Materials: Engineering chains intended for use in food processing and packaging must be made from food-grade materials that meet industry standards for cleanliness and hygiene. Stainless steel chains are commonly used in these applications due to their corrosion resistance and ease of cleaning.
  • Design and Construction: The chain design should minimize crevices, pockets, or areas that can trap food particles or contaminants. Smooth surfaces and sealed joints are preferred to facilitate thorough cleaning and prevent bacterial growth.
  • Temperature and Chemical Resistance: Engineering chains should be capable of withstanding the temperature ranges and cleaning agents used in food processing facilities without compromising their performance or integrity.
  • Lubrication: If lubrication is required, food-grade lubricants must be used to avoid contamination of the food products or packaging materials.
  • Cleanability: The chain and its components should be easily accessible for cleaning and sanitation procedures. Quick disassembly and reassembly can also be beneficial for efficient cleaning processes.
  • Regulatory Compliance: Compliance with food safety and sanitation regulations is of utmost importance. Engineering chains used in the food industry should meet industry standards and regulations to ensure product safety.

It’s crucial for food processing and packaging companies to work closely with chain suppliers who understand the specific requirements of the industry and offer chains designed and manufactured to meet these standards. Regular maintenance and inspections are essential to detect any signs of wear, damage, or contamination that could compromise the chain’s suitability for food-related applications.

By adhering to these guidelines and best practices, engineering chains can safely and effectively be used in food processing and packaging industries, contributing to the efficient and reliable operation of conveyor systems and other equipment in these critical sectors.

engineering chain

Can engineering chains be used in corrosive or harsh environments?

Yes, engineering chains can be designed and manufactured to withstand corrosive or harsh environments. When operating in such conditions, it is crucial to select the appropriate materials and coatings for the chain to ensure its durability and performance. Here are some considerations for using engineering chains in corrosive or harsh environments:

1. Material Selection: Choose materials that have high corrosion resistance, such as stainless steel or nickel-plated chains. These materials can withstand exposure to moisture, chemicals, and other corrosive agents.

2. Coatings and Surface Treatments: Applying specialized coatings or surface treatments to the chain can further enhance its corrosion resistance. Common coatings include zinc plating, chromate conversion coating, and polymer coatings.

3. Sealed Joints: Opt for engineering chains with sealed joints or special seals to protect the internal components from contaminants and moisture, reducing the risk of corrosion.

4. Environmental Ratings: Some engineering chains may come with specific environmental ratings that indicate their suitability for certain conditions. Check these ratings to ensure the chain is appropriate for the intended environment.

5. Regular Maintenance: Even with corrosion-resistant materials and coatings, regular maintenance is essential. Keep the chain clean, lubricated, and free from debris to prevent corrosion and premature wear.

6. Compatibility with Other Components: Ensure that all components in the chain system, such as sprockets and bearings, are also suitable for use in corrosive environments.

7. Temperature Considerations: Take into account the operating temperature range of the environment. Some materials may perform differently at extreme temperatures, affecting the chain’s overall performance.

8. Chemical Exposure: If the chain will be exposed to specific chemicals or substances, verify that the chosen materials and coatings are resistant to those chemicals.

By carefully selecting the right materials, coatings, and design features, engineering chains can effectively handle corrosive or harsh environments, maintaining their functionality and longevity in challenging industrial applications.

China manufacturer Industrial Engineering Chains for Transmission Escalator  China manufacturer Industrial Engineering Chains for Transmission Escalator
editor by CX 2023-10-10